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Abstract. Exact wavefunctions are found far two-particle atomic perturbation problems, 
as expansions in a discrele basis involving Pollaczek polynomials. The solulions contain no 
arbitraiy parameten and fully satisfy the boundary conditions. For the case of the long- 
range interaction between two ground-state hydrogen atoms, the expansion coefficicnls 
reduce lo closed form, yielding exacl integral representations for the van der Waals 
dispenion coefficients. The exlension to the helium perturbation problem is discussed. 
The treatment complements sludies involving formal power series wilh logarithmic terms. 

1. Introduction 

The practical usefulness of formal solutions to the few-particle atomic Schrodinger 
equation depends on the properties of the expansion of the wavefunction One 
choice is power series with logarithmic terms. Considerable progress has been made 
in obtaining solutions and compacting the resulting series, but the serious problem of 
formulating and applying the boundary conditions to determine the physical solution 
remains (Gottschalk and Maslcn 1985, Abbott and Maslen 1987, Gottschalk er ol 
1987). The consequences of the boundary conditions are not fully understood. 

One alternative is to select basis functions which naturally reflect the structure 
of the problem. For few-particle perturbation problems the obvious choice, namely 
the eigenfunctions of the unperturbed Hamiltonian, form a complete set This ba- 
sis avoids normalizability difficulties, but often leads to multiple continuum integrals 
which are intractable both analytically and numerically. For this reason the complete- 
ness of these eigenfunctions is sometimes regarded as having no more than formal 
significance. 

A third possibility is in some ways intermediate between the first two: the wave- 
function may be expanded in a discrete ( L z )  basis. Koga and co-workers (Koga 1985a, 
b, 1986, 1989, Koga and Matsumoto 1985, Koga and Uji-ie 1986, 1987a, b) applied a 
discrete basis successfully to the momentum spacc perturbation equations for the van 
der Waais interaction between two hydrogen atoms, and reiated problems. A rrun- 
cated basis set yielded highly accurate numcrical values for the expansion coelficients 
and the energy eigenvalucs. Howevcr the possibility of analytical solutions for the 
coelficients was not considered, nor did the role of the boundary conditions emerge 
clearly. 
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In this paper it is shown that the analysis simplifies when the wavefunction is 
expanded in terms of Pollaczek polynomials (Pollaczek 1949, Szego 1950,1975, ErdClyi 
el ol 1953, Bank and lsmail 1985, Broad 1985). Exact solutions, valid to arbitrary 
order in the multipole expansion, have the form of integrals over the Pollaczek 
weight function. The treatment includes the helium perturbation problem; although 
the solutions for this case are complicated, they naturally satisfy the exact boundary 
conditions for the wavefunction. The solutions can be interpreted as arising from a 

the solutions are applied to an efficient calculation of van der Waals dkpersion 
coelficients. 

- 1 , l )  and q; ' (z)  for Pollaczek func- 
tions of the first and second kind, respectively, is used throughout this paper. 

mixed expansio!2 inve!ving bet!! !he eigP!?filnc!ien basis and the d&scrP!e basis. Fixa!!y, 

Broad's (1985) notation p h ( z )  

2. The Fock transformation 

Fock (1935) introduced a special transformation for his treatment of the hydro- 
gen atom in momentum space. Geometrically, momentum space is envisioned as 

mapped onto the hypersphere of radius p ,  centred at the origin, by stereographic 
projection with the projective origin ( O , O , O , - p , ) .  If S2 = ( a , B , q 5 )  are polar coor- 
dinates on the hypersphere, B and 4 are the usual spherical polar angles for p ,  and 
p = p ,  t an (a /2 ) .  The momentum volume element in terms of Fock variables is 

a hyperp!ane rmbedrled i!? a f!xr-dime!?sia!?a! spare. The mOmentum vectar p is 

where dS2 = sin 'a  sin 8 d a  d B  d 4  is the surface element on the hypersphere in four 
dimensions. 

The utility of the Fock representation results from the expansion (Judd 1975) of 
the Coulomb kernel, 

I P - P ' I - '  = 8 n 2 p i ( p ;  -t P ' ) - ' ( P ~  t P ) (2.2) ( 2  -1 ~-'Y&,(Q')Y,I,,,(~) 
n Im 

in which the four-dimensional spherical harmonics, Yc!7z, are defined by 

Here Y,, is the usual three-dimensional spherical harmonic, C!,tll-l is a Gegcnhauer 
polynomial (Abramowitz and Stegun 1972), and A,, = [n(n  - 1 - l ) ! / (n  + [)!]I/'. 

The functions U,,, form a complete orthonormal basis for the set of squarc- 
integrable functions on the hypersphere (Vilenkin 1968, p 468), and are orthonormal 
with respect to the measure do. Further properties associated with tcnsor coupling 
of angular momenta are given by Judd (1975) and Ahbott (1986). 
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3. Complete basis sets 

3. I .  Eigenfunction basis 

The normalized hound states of the hydrogen atom (Podolsky and Pauling 1929, 
Fock 1935) are 

Xni,(p) = 4 n - 5 q n - 2  + p2)-2Yn,,(n(")) (3.1) 

where the symbol n(.) indicates a Fock transformation with p ,  = n-l = m. 
These functions do not form a complete set unless the continuum states are included; 
thus the expansion of a general momentum space function is an infinite sum over the 
discrete bound states plus an integral over the continuum. 

Unnormalized continuum states are defincd by the analytic continuation of (3.1) 
to imaginary n, accomplishcd by rewriting the Gegenhaucr polynomial in (2.3) as a 
hypergeometric function. 

3.2. Laguerre-type basis 

The completeness property of the fourdimensional spherical harmonics suggests a 
choice of discrete basis functions. We define 

@d,(P)  = ( - l )nAni ( l  + P2)-2y,rm(n). ( 3 4  

It is understood here and in future equations that when p and R appear togethcr 
without superscripts they are related by a Fock transfonnation with p, = 1. The 
functions dni, are complete and orthogonal with respect to the measure ( 1  + p2)dp. 
Integrals of the type J&m+n,,,m,dp occur frequently in this work; they may he  
reduced using the identity (Koga and Matsumoto 1985) 

- 4 ( 1 +  pZ)-'+,,im = [(n - 1 - l ) / ( n  - l)14n-iim -24=im 

+ [ (n+l+l) / (n+l) l4 ,+11, .  (3.3) 

The basis functions +n im are essentially those used by Koga er a /  in their work on 
the van der Waals problem, except for combinatorial factors included for convenience. 
In the configuration space representation, 

dn,,"(v) = - ( l / Z ) n - ' A ~ l ~ - r ( 2 ~ ) ' L ~ i ~ ~ - l ( ~ , ~ ) ~ , ( ~ ,  4). (3.4) 

These functions have been applicd extcnsivcly in so-called L 2  hasis calculations of 
potential scattering and ionii-ation processes. Many of the results in this paper are 
relatcd to such work, particularly in connection with equivalent quadraturc, Sticltjes 
imaging, and J-matrix methods (Hcller er a/ 1973, Hcllcr 1975, Yamani and Rcin- 
hardt 1975, Broad 1978, 1985). 
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3.3. Change of basis 

Consider the momentum space Schrodinger equation for the hydrogen atom, in 
atomic units, 

( E  - p2/2)4(p) + (2n2)-' / I P -  nl-'+(q) d q  = 0 (3.5) 

where the integral is over all space. Expanding the wavefunction in the {4n,m] basis, 
4 = xan,m+nlm, and using the kernel expansion (2.2) together with the identity 
(3.3), we obtain 

( n  + l)an+l,m - Z [ ( n  - 1)z + lla,,, + (. + b n - 1 , ,  = 0 

n - 1 = 1 , 2 , 3 , .  . . (3.6) 

where z = ( 2 E -  1 ) / ( 2 E + l ) .  This recurrence relation is satisfied by the Pollaczek 
polynomial ~!,-,-~(z), the other linearly independent solution being excluded by the 
condition allm = 0. Normalising the solution by examining the limit p - 0, we find 

m 

Xnlm = 4n-1'2Jn, P L - 1 ( z n ) + k h  (3.7) 
k = I t l  

where z, = (1 + n 2 ) / (  1 - n2)  and 

J, ,  = A;:(4n)'+'(1 - n)*-'-'(l + n)-"-'-'. (3.8) 

Thus we identify the Pollaczek polynomials as the transformation coenicients in chang- 
ing from the eigenfunction basis to the set {4nlm]. The formula holds for any n 
corresponding to both bound and unbound states xnlm. An equivalent formula in 
position space was obtained by Broad (1985) and, in a finite basis form, by Yamani 
and Reinhardt (1975). 

4. The van der Waals perturbation problem 

The H(1s)-H(1s) system of interest involves two hydrogen atoms interacting at long 
range. Under the infinite nuclear masses approximation, the problem reduces to that 
of two electrons moving in the potential of two fixed protons. The long-range ef- 
fects may be studied systematically using perturbation series in inverse powers of the 
internuclear separation R. The effects of wavefunction symmetry may be neglected, 
since the exchange energy vanishes to all orders in the perturbation expansion (Al- 
richs 1976, Morgan and Simon 1980). Relativistic corrections enter at O(  R-4) in the 
energy. 

This problem's dilficulties are typical oC few-particle systems. The Schrodinger 
equation is not separable, and has no solutions in the form of power series in the 
electron coordinates: it is necessary to include logarithmic terms (Tulub 1969, n l u b  
el al 1971, Abbott 1986). Consequently early work was concentrated on approxi- 
mate methods, which yielded accurate values for the energy eigenvalues, but poor 
approximations to the exact wavefunction. 
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More recently, a discrete basis technique has been applied to the H(ls)-H(lS) 
and related systems with considerable success. Koga (1985a, b, 1986, 1989), Koga 
and Matsumoto (1985) and Koga and Uji-ie (1986, 1987a. b) calculated leading-order 
interaction energies for a range of two- and three-body problems. Their method 
depends on solving a two-dimensional recurrence relation by matrix truncation. 

In this section we express the recurrence relation in a form closely resembling 
the equation defining the Pollaczek polynomials, preparing for the exact solution in 
section 5. The treatment is valid to arbitrary order in the multipole expansion. 

The first-order perturbation equations can he written 

(ffo + 1)$,,3(112) = 4 ( 1  + P ? ) - I ( ~  + & - ' B i , ~ ( 1 , 2 )  (4.1) 

where (1,2) represents ( p l . p z )  and H,, = HL1) + H C )  is given by 

fd1)@(pl ,p2)  = ( p f / 2 ) @ ( p 1 , p 2 )  - (2n")-1]9-2@(p1 - n , p 2 ) d q  ( 4 4  

and a similar expression for H f )  has the momenta interchanged. The functions 
B,i,(l, 2) are generated from the multipole expansion of the interaction potential; the  
general formula is given by Koga and Uji-ie (1986). The functions GI,, are defined by 
the corresponding expansion of the first-order wavefunction, Q l  = R-i-i'-l+i,,. 
Expanding $+,, in the series 

< 
$i i , ( l , z )  = = y p : ' ; ,  [ ( l - m ) ! ( L + m ) ! ( L ' - m ) ! ( / ' +  m)!]-"2 

nn' m=-<  

x &m(1) 'L, i , -m(2)  (4.3) 

where < is the lesser of 1 and 1'. yields the recurrence relation to he solved, 

(n ' -  I)[(. - L)Pntln, - 2npnn, + (. + 0Pn-ln,I 
+ ( R  - I)[(" - 1')P,,,+1 - 2n'P,,, + (n' + 1')Pnn,-l1 = R,,,, 

(4.4) 

in which 

R,,, = (-l)W-"(L + 1 ' ) ! ( 2 1 +  2) ! (2 / '+  2 ) ! [ ( 2 1 +  1)(21 '+ 1)]-1'2 

x ( 6 , J t I  - ~ n , l + 2 ) ( ~ r , ~ , i ~ + l  - d n ' , l ' t 2 ) .  (4.5) 

In the recurrence rclation (4.4), the superscripts have been dropped for convcnience. 
The extension to more complex two-electron perturbation problems is straight- 

forward. For the helium isoelectronic sequence, neglecting rclativistic effccts and 
spin, the expansion coefficients for the  first-order perturbation wavefunction satisfy 
an equation differing from (4.4) only in the inhomogeneous term Rnn,. The exact 
solution presented in the next section thus includes the perturbation problems of both 
the H(1s)-H(1s) system and the helium isoelectronic sequence as spccial cases. 
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5. Solution of the recurrence relation 

The general solution of the recurrence relation (4.4) contains an infinite number of 
adjustable parameters. Applying the appropriate boundary condition fixes uniquely 
the wavefunction and energy eigenvalue. The cxact solution presented herc satisfies 
the condition that the coefficients decay exponentially as a function of the indices. 
This boundary condition, equivalent to the matrix truncation procedure used in nu- 

Multiplying (4.4) by 7 ~ ~ - ' A ~ , ~ , p ~ , - ~ , - ~ ( z ) ,  summing over n' and using the rccur- 
!2eric?! wcrk by Keg2 mc! CO-wcrkers, is c!isc.s.ec! f.rther i!? s e c h !  6. 

rence relation defining p L ( z )  gives 

(n-1)S,+1-2[(7~-11)(2.-2.)+ l ]S,+(nfl)S,- ,  = &,(z) (5.1) 

Where 

m 

S,(Z) = ( 1  - ~ ' - ' ) A ~ , I , P ~ , - I , - ~ ( ~ ) ~ ~ ~ ,  ( 5 4  
n'=l,+1 

and 
m 

(5.3) 
Q,(z) = n ' - ' ~ ~ ~ , ~ , p ~ , - ~ , - ~ ( ~ ) ~ " ~ , .  I' 

n'=l'+l 

The solution of (5.1) satisfying the  statcd boundary condition is readily shown to he 

cc 

(5.4) Sn(z) = n ' - ' A 2 , , i Q n , ( z ) p ~ ~ _ i - i ( 2  - Z ) q n , - l - l ( 2  + I  - Z) 

n'=l+l 

where n ,  (n,) is the lesser (greater) of n and n'. Thus the problem is reduced to 
evaluating the sums (5.3) and (5.4) and computing the inversion integral 

CZJ 

P d  = 1, s"(Z)P~,_l,_,(Zc)PI'(")dr (5.5) 

where P,(z) is the orthogonality measure (Broad 1985), 

r m , - , r , L , - , v , \ - , - -  f T ~ , , ~ / T I , , . f T ) & = A  - ""in,." ( ? , + I )  ,X,+,,,," / f ? , A f )  I " I  ( 5 6 )  J -  m 

of the Pollaczek polynomials. Equations (5.4) and (5.9, giving the expansion coef- 
ficients in terms of thc inhomogeneous term, are the principal results of this paper. 
The auxiliary function S,(z) has a direct intcrprctation as the expansion coclficients 
in the cigenfunction basis, as discussed in section 6. 

For the van dcr -waais interaction, both sums coiiapsc to exact soiutions ior S,  (t j 
to arbitrary order in the pcrturbation cxpansion, 

( 1  + 1')!1'[(21 t lj(21' + 1)l-l 'z  s, I I '  (.) = ( - 1 ) ~ + 1 2 ' - ~ - ~ '  

x ( Z  - 1 ) [ 1 ( ~  - l)q:!l-,(2 - Z) - (21 + 1)!6n,i+i]. (5.7) 
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These expressions form the basis for a numerical determination of the van dcr Waals 
dispersion coefficients in section 7. 

For the helium perturbation problem, the solutions are more complicated, being 
multiply infinite series with coefficients of the form (5.5). Their significance lies in 
the fact that they obey the exact boundary conditions for the wavefunction, in con- 
trast with techniques based on formal power series expansions, which generally yield 
solutions containing a number of undetermined coefficients (Abbott 1986). Although 
the physical solution can in principle be extracted by requiring that the wavefunction 
be normalizable, no general procedure for eliminating these extra degrees of free- 
dom exists. The discrete basis treatment circumvents this problem by transferring the 
boundary conditions to a simple constraint on the coefficients. Normalisability of the 
solutions is implicit in the procedure. 

6. Boundary conditions 

We now show that the quantity S,( z) has a direct interprctation involving the eigen- 
function basis. Initially we restrict attention to a single momentum variable. Com- 
bining the discrete hasis expansion C$ = X~,,,,,,C$~,,,, with 

a, 

(6.1) 

and using the change of basis formula (3.7), yields the relation 

where I C 2  = ( z  - 1)/(z + 1). Hence the values of S(Z) at the spectral points 
(corresponding to allowed energies) are the coefficients in the expansion of 4 in 
terms of the eigenfunctions of the unperturbed Hamiltonian. In the two-particle 
wavefunctions, we have applied the transformation (6.1) to only one of the momentum 
variables. Thus we interpret S,(z) as the coefficients in a mixed expansion involving 
both the discrete and the eigenfunction bases. 

We turn now to the origin of the boundary conditions used in the previous sec- 
tion to obtain a unique solution of the recurrence relation. The gencral solution of 
(5.1) consists of the particular solution already obtained plus an arbitrary multiple 
of the homogeneous solution, ~!,-,-~('2 - 2). When substituted into (6.2) this ho- 
mogeneous solution gives rise to additional terms in the wavcfunction of the type 
X , , , , ( Z , P ~ ) X , , ~ , ( ~ -  z , p 2 ) ,  where x , , , , ( z k , p )  = x k l m ( p ) .  These arc excited states 
of the unperturbed system with the same energy as the state @,,. Thus, degenerate 
perturbation theory must be applied. The spurious terms arise because in the discrete 
basis the Hamiltonian is not diagonal in the dcgcncrate subspace. Thus thc prcscrip- 
tion of exponentially decaying coelficients eliminates contributions from the excited 
states, which are incompatible with the physical situation. 
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7. Van der Waals dispersion energy 

The first-order energy in the perturbation expansion vanishes due to the orthogonality 
of the spherical harmonics. Thus the leading-order dispersion energy is the second- 
order correction, given by a matrix element, E2 = ( ~ o ~ V ~ W J ,  of the interaction 
potential. In the framework of the multipole expansion, we may calculate an energy 
contribution from each $ii, separately, since the cross terms vanish by orthogonality. 
Hence the quantity of interest is 

Ell, = -4 (1 +~:)- ' ( l  + ~ ~ ) - ~ B 1 1 . ( 1 , 2 ) $ ; ~ , ( 1 , 2 ) d p l d p 2 .  (7.1) J 
Then the coefficients in the expansion E,  = C6R-6 + C,R-, + Cl0R-'O + . . . are 
given by 

n - 2  

c 2 ,  = c ~l,n-l-l. ( 7 4  
I=1 

This series yields the asymptotic dispersion energy up to terms of order R-lo, since 
the third-order perturbation energy is O( R-'I). 

Due to the simple form of Eli, in the Fock representation, the integrals (7.1) 
collapse to a linear combination of just four p coefficients. These are known from 
section 5 as integrals over St '  and the Pollaczek weight function. Collecting functions 
of z, we arrive at the result 

(21+21')! 1(~'+1)-11'-2(41'3+111'2+81'+2)-1'~'(1'+2)(21'+1) 

(7.3) 
1 m 

[ E - 2-21-2i'-l 
11' - 

+ 2L21I2[(21+ 1)!(21'+ l)!]-'J (z  - l ) ' q f ( Z  - z ) p l , ( z ) d z  . 
-m 

A further quantity of interest is the coelficient W, of the leading-order relativistic 
energy correction proportional to a2R-'. Following Koga (1985b), we have 

m 

W,=(1/6)& = 1 + ( 1 / 7 2 ) /  ( z -1 )2qof2 (Z-z )p l ( z )dz .  (7.4) 
--m 

The Pollaczek function q:' may be computed numerically from the  continued 
fraction expansion, 

(7.5) C I  40 (2) = -2(21)! a o / { b o  - a l [ b i  - az/(b2 - . . .)]I 

wherea, = ( n + 2 1 + l ) / ( n + l )  and b, = 2 [ ( n + 1 ) z + l ] / ( n + l ) .  Thus(7.3)and 
(7.4) provide a particularly simple method of calculating the interaction constants. 
Results of such a calculation are presented in table 1. The values are accurate to- 
within one unit in the last (15th) decimal place. Our results agree perfectly with 
those of Koga (1989), and with those of Thakkar (1988) obtained using a pseudostate 
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Table 1. Second order van der Waals dispenian coefficients. A ( m )  means A x 10'". 

" - C" 

6 6.499 026 705 405 84 
8 l.Za399083583622(2) 

10 3.285 828 414967 42 (3) 
12 1.214860208968 61 (5) 
14 
16 3.937 506 393 999 18 (8) 
18 3.23421871584938(10) 
20 3.278573 440416 62 (12) 
22 4.021 082 847 685 36 (14) 
24 5.86899633455996(16) 
26 1.005 294 993 336 29 (19) 
28 1.99694494088758(21) 
30 4.553 288 866 634 74 (23) 

6.M0772 689 192 !2  ( 6 )  

W, 0.462 806 538 843 273 

technique. However, our calculations do not generalize readily to the non-additive 
three-body interaction coetficients. 

The details of the calculation are unremarkable. Integrals of the type 
J f ( z ) p , ( z )  d z  were evaluated using a standard integration routine and by direct 
summation of the  infinite series. The convergence of the series was accelerated 
dramatically by asymptotic estimation of the truncation error  if f(-1) # 0, the 
leading-order correction is 

e.3 

2n(n2-  1)-'J:,f(zn) = 24'+4e-4 f ( - i ) ( ~ +  1 ) ~ - 3  + o ( N - ~ ) .  (7.6) 
n=N 

The expansion coefficients &I:, may also be computed accurately and etficicntly 
by this method. Given that stable algorithms for calculating the Pollaczek polynomials 
and f.SCt!Qc?.S 
rapidly with n and n'. This may be compared with matrix truncation methods, which 
require solution of a set of linear equations whose size grows as O(nn ' ) .  These 
considerations may be significant in further calculations involving slowly convergent 
series of p coefficients (see, for example, Koga and Uji-ie 1987b). 

(Broad !?q, the ~ Q m p " ~ ~ ~ ~ o n a !  effcrt invo!ved does not  Drnw e,.-.. 

8. Conclusions 

This work has been motivated primarily by the search for exact solutions: the dispcr- 
sion coefficients have been calculated accurately by other methods, but relatively little 
is known about the exact wavefunction. In this work, the series expansions for the 
wavefunction are exact, but converge rather slowly. In this sense they are of direct 
interest only to the extent that they can be compacted into closed form. The fact that 
the integral formula for the coetficients does not appear to reduce is not promising 
in this regard. 

More encouraging are the results concerning the role of boundary conditions in 
this treatment A discrete basis approach entirely avoids the problem of undetermined 
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coefficients, which is a major complication in more direct methods. The physical 
conditions of the problem translate naturally into a condition on the expansion cocffi- 
cients. It is hoped that further investigations will lead to a better understanding of the 
consequences of boundaly conditions on few-particle wavefunctions. Progress is likely 
to he made by relating the discrete basis solutions to formal power-series solutions 
already known. The optimum procedure will involve a combination of techniques. 
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