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Abstract. Exact wavefunctions are found for two-particle atomic perturbation problems,
as expansions in a diserete basis involving Pollaczek polynomials. The solutions contain no
arbitrary parameters and fully satisfy the boundary conditions. For the case of the long-
range interaction between two ground-stale hydrogen atoms, the expansion cocfficients
reduce to closed form, yielding exact integral representations for the van der Waals
dispersion coefficients. The extension to the helium perturbation problem is discussed.
The ireatment complements studies involving formal power series with logarithmic terms.

1. Introduction

The practical usefulness of formal solutions to the few-particle atomic Schrodinger
equation depends on the properties of the expansion of the wavefunction One
choice is power serics with logarithmic terms. Considerable progress has been made
in obtaining solutions and compacting the resulting series, but the serious problem of
formulating and applying the boundary conditions to determine the physical solution
remains {Gottschalk and Maslen 1985, Abbott and Maslen 1987, Gottschalk er al
1987). The consequences of the boundary conditions are not fully understood.

One alternative is to select basis functions which naturally reflect the structure
of the problem. For few-particle perturbation problems the obvious choice, namely
the eigenfunctions of the unperturbed Hamiltonian, form a complete set. This ba-
sis avoids normalizability difficulties, but often leads to multiple continuum integrals
which are intractable both analytically and numerically. For this reason the complete-
ness of these eigenfunctions 15 sometimes regarded as having no more than formal
significance.

A third possibility is in some ways intermediate between the first twor the wave-
function may be expanded in a discrete ( L?) basis. Koga and co-workers (Koga 1985a,
b, 1986, 1989, Koga and Matsumoto 1985, Koga and Uji-ie 1986, 1987a, b) applied a
discrete basis successfully to the momentum space perturbation equations for the van
der Waai$ interaction between two hydrogen aioms, and related probiems. A trun-
cated basis set yielded highly accurate numecrical values for the expansion cocflicicnts
and the energy eigenvalucs. However the possibility of analytical solutions for the
cocfficients was not considered, nor did the role of the boundary conditions emcrge
clearly.
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In this paper it is shown that the analysis simplifics when the wavefunction is
expanded in terms of Pollaczek polynomials (Pollaczek 1949, Szegd 1950, 1975, Erdélyi
et al 1953, Bank and Ismail 1985, Broad 1985). Exact solutions, valid to arbitrary
order in the multipole expansion, have the form of integrals over the Pollaczek
weight function. The treatment includes the helium perturbation problem; although
the solutions for this case are complicated, they naturally satisfy the exact boundary
conditions for the wavefunction. The solutions can be interpreted as arising from a

mixed pv?nnmnn 1nun|\nnn hoth the clggnfnnrhnn hagis and the discrete hasis, F‘-qa!!y,

the solutions are apphcd to an efficient calculation of van der Waals dispersion
coefficients.

Broad’s (1985} notation p! (z) = Pi*'(z,—1,1) and g¢}(z) for Pollaczek func-
tions of the first and sccond kind, respectively, is used throughout this paper.

2. The Fock transformation

Fock (1935) introduced a special transformation for his treatment of the hydro-
gen atom in momentum space. Geometrically, momentum space is envisioned as
a hvnprnlanp embedded in a four-dimensional space. The momentum vector » i§

L paG LALNVLRRNAL M 4 IUTRITULLNRAGAVNAL SpPatL. Aai FLIRPEIILARLASNRD WRRARM

mapped onto the hypersphere of radius p, centred at the origin, by stereographic
projection with the projective origin (0,0,0,—p,). If Q@ = («, 8, ¢) are polar coor-
dinates on the hypersphere, § and ¢ are the usual spherical polar angles for p, and
p = pptan{a/2). The momentum volume element in terms of Fock variables is

\Po + P )
dp = dQ 2.1
P=\ @) ) -
where dQ = sin?
dimensions.
The utility of the Fock representation results from the expansion (Judd 1975) of
the Coulomb kernel,

osin 8da d@ d¢ is the surface clement on the hypersphere in four

lp— P77 = 8x?pd(p} + p*)  (PE + P D T Y ()Y () (2.2)

nim

in which the four-dimensional spherical harmonics, Y, ., are defined by

1/2
Yn,m(ﬂ)z(-—Qi)"[!(%) A, sinfaClH (cosa)Y;, (0, 8). (2.3)

Herc Y}, is the usual three-dimensional spherical harmonic, ij’_‘,_l is a Gegenbauer

polynomial (Abramowitz and Stegun 1972), and A,; = [n(n - (- 1)}!/(n+ Nz,

The functions Y7, form a complete orthonormal basis for the set of square-
integrable functions on the hypersphere (Vilenkin 1968, p 468), and ate orthonormal
with respect to the measure dQ. Further propertics associated with tensor coupling
of angular momenta arc given by Judd (1975) and Abbott (1986).
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3. Complete basis sets

3.1. Eigenfunction basis

The normalized bound states of the hydrogen atom (Podolsky and Pauling 1929,
Fock 1935) are

xnlm(p) = 4”’-5/2(”“2 + p2)_2Ynlm(Q(n)) (31)

where the symbol £2() indicates a Fock transformation with p, = n~! = /-2E.
These functions do not form a complete set unless the continuum states are included;
thus the expansion of a general momentum space function is an infinite sum over the
discrete bound states plus an integral over the continuum.

Unnormalized continuum states are defincd by the analytic continuation of (3.1)
to imaginary ., accomplished by rewriting the Gegenbauer polynomial in (2.3) as a
hypergeometric function.

3.2. Laguerre-type basis

The completeness property of the four-dimensional spherical harmonics suggests a
choice of discrete basis functions. We define

¢ni’m(p) = (_l)nAnl(l + pg)_QYni’m(Q)' (32)

It is understood here and in future equations that when p and © appear together
without superscripts they are related by a Fock transformation with p, = 1. The
functions ¢,,;,,, are complete and orthogonal with respect to the measure (14 p?)dp.
Integrals of the type [ &%, &, dp occur frequently in this work; they may be
reduced using the identity (Koga and Matsumoto 1985)

- 4(1 + pz)_lénf‘m = [(ﬂ e 1)/(” - 1)](‘611—»11111. —zqﬁni’m

The basis functions ¢, are essentially those used by Koga et af in their work on
the van der Waals problem, except for combinatorial factors included for convenience.
In the configuration space representation,

G (1) = —(1/2)n7 AL 77 (2r) LI ((20)Y),,,(0, ). (3.4

These functions have been applied extensively in so-called L? basis calculations of
potential scattering and ionization processes. Many of the results in this paper are
related to such work, particularly in connection with equivalent quadrature, Sticltjes
imaging, and J-matrix methods (Heller er a/ 1973, Hcller 1975, Yamani and Rein-
hardt 1975, Broad 1978, 1985).
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3.3. Change of basis

Consider the momentum space Schrodinger equation for the hydrogen atom, in
atomic units,

(B - */2)6(0) + (2)7 [Ip-al6(q)da = 0 (35)

where the integral is over all space. Expanding the wavefunction in the {¢_,, } basis,

¢ =3 0,0m®nim, and using the kernel expansion (2.2) together with the identity
(3.3), we obtain

('n + l)an+11m - 2[("‘ "" 1)3: + l}aﬂ.I'm + (n + l)a'n—lim =0
n-1=1,2,3,... (3.6)

where x = (2E—1)/{2E+1). This recurrence relation is satisfied by the Pollaczek
polynomial p! _,_,(z), the other linearly independent sofution being excluded by the
condition aj,,, = 0. Normalising the solution by examining the limit p — 0, we find

o
Xnilm =4n_1/2Jﬂ.l Z pic-—l—-l(‘rn)qbklm (37)
ki1

where z, = (1 +n?)/(1 - n?) and
Jo= A (@)1 - n) T 4 n) T (3.8)

Thus we identify the Pollaczek polynomials as the transformation coefficients in chang-
ing from the eigenfunction basis to the set {¢,,;,,}. The formula holds for any =
corresponding to both bound and unbound states x,;.,. An equivalent formula in
position space was obtained by Broad (1985) and, in a finite basis form, by Yamani
and Reinhardt (1975).

4. The van der Waals perturbation problem

The H(1s)-H(1s) system of interest involves two hydrogen atoms interacting at long
range. Under the infinite nuclear masses approximation, the problem reduces to that
of two electrons moving in the potential of two fixed protons. The long-range ef-
fects may be studied systematically using perturbation series in inverse powers of the
internuclear separation R. The effects of wavefunction symmetry may be neglected,
since the exchange energy vanishes to all orders in the perturbation expansion (Al-
richs 1976, Morgan and Simon 1980). Relativistic corrections enter at O( R~*) in the
energy.

This problem’s difficultics are typical of few-particle systems. The Schrodinger
equation is not separable, and has no solutions in the form of power series in the
electron coordinates: it is necessary to include logarithmic terms (Tulub 1969, Tulub
et al 1971, Abbott 1986). Consequently early work was concentrated on approxi-
mate methods, which yiclded accurate values for the energy eigenvalues, but poor
approximations to the exact wavefunction.
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More recently, a discrete basis technique has been applied to the H(1s)-H(ls)
and related systems with considerable success. Koga (1985a, b, 1986, 1989), Koga
and Matsumoto (1985} and Koga and Uji-ie (1986, 1987a, b) calculated leading-order
interaction encrgies for a range of two- and three-body problems. Their method
depends on solving a two-dimensional recurrence relation by matrix truncation.

In this section we express the recurrence relation in a form closely resembling
the equation defining the Pollaczek polynomials, preparing for the exact solution in
section 5. The treatment is valid to arbitrary order in the multipole expansion.

The first-order perturbation equations can be written

(Hy+ Dyp(1,2) = 4(1 + p1) 7' (1 + p3) "' By (1,2) (4.1)

where (1,2) represents (p,,p,) and Hy = Hgl) + Héz) is given by
HG@(p1p2) = (p1/2) 8(p1, ) — (20) 7 / 77 ®(p, - a.7;) dg (4.2)

and a similar expression for H? has the momenta interchanged. The functions
By:(1,2) are generated from the multipole expansion of the interaction potential; the
general formula is given by Koga and Uji-ie (1986). The functions i, are defined by
the corresponding expansion of the first-order wavefunction, ¥, = 5~ R="=V'-1 g,
Expanding +;,, in the serics

<
Y (1,2) =385, 37 [(1—m)i(I+ m)I(l' — m)!(I' + m)!|~'/2

nn' me— <

% ¢n2m(1)¢n’i’—m(2) (43)

where < is the lesser of [ and U, yields the recurrence relation to be solved,

(TL’ - 1)[(?1 - ‘!)ﬁn-}-ln‘ - 2nﬂnn' + (n + l)ﬁn-ln’}

+ (n - 1)[("" - l’)ﬁnn’-}-l - zn’ﬁnn' + (ﬂ,’ + l’)!@nn’—-ll = Rnn‘
(4.4)

1n which

R, = (=1)122 =00 4 20 + 2)12 4 2)[(20 + 1)(20' + 1)]71/2
X (6n,]+1 - 6n.!+2)(6n',1'+1 - 6n'.2’+2)‘ (4’5)

In the recurrence relation {4.4), the superscripts have been dropped for convenience.

The extension to more complex two-electron perturbation problems is straight-
forward. For the helium isoclectronic sequence, neglecting relativistic effects and
spin, the expansion coefficicnts for the first-order perturbation wavefunction satisfy
an equation differing from (4.4) only in the inhomogencous term R, ... The exact
solution presented in the next section thus includes the perturbation problems of both
the H(1s)-H(1s) system and the helium isoclectronic sequence as special cases.
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5. Solution of the recurrence relation

The general solution of the recurrence relation (4.4) contains an infinite number of
adjustable parameters. Applying the appropriate boundary condition fixes uniquely
the wavefunction and energy cigenvalue. The cxact solution presented herc satisfies
the condition that the cocflicients decay exponentially as a function of the indices.
This boundary condition, equivalent to the matrix truncation procedure used in nu-

mprlr'n! work hv Konoa and rr\-wr\r‘lﬂ!rc it diecussed further in caction 6

Ol Ve n Uy Tauplh Gasls RasThY LR SN BT IO TG AL LARR A EAR WL ERTRL A

Multiplying (4.4) by n’~142 ,,,pn,_,,_l(sc) summing over n* and using the recur-
rence relation defining p! (z) gives

(n—0S, 1 -2[(rn-1)(2-z)+1]5, +(rn+ )3, - Qn(z) (5.1
where
Sp(z) = i1(1—n'-l)Ai,,,p::u,f_l(a:)ﬂm. (52)
nizl4
and
Q. (x)= Z{ 'A%l ()R, (5.3)
/=l

The solution of (5.1) satisfying the stated boundary condition is readily shown to be

Su(e) = (1/2) Y n' AL Q@) i, (2 - 2)gll (2 - ) (5.4)

n'={+1

where n  (n,) is the lesser (greater) of » and n’. Thus the problem is reduced to
evaluating the sums (5.3) and (5.4) and computing the inversion integral

B = [ S, (2)Pcus(2)pu(2) d (5.5)

where p;(z} is the orthogonality measure (Broad 1985),

T
~—
-
=
o
~—
-
L
(=)
'

of the Pollaczek polynomials. Equations (5.4} and (5.5), giving the expansion coef-
ficients in terms of the inhomogeneous term, are the principal results of this paper.
The auxiliary function S, (z) has a direct interpretation as the expansion cocflicients
in the eigenfunction basis, as discussed in section 6.

For the van der Waals interaction, both sums coliapse to exact solutions for 5, ()
to arbitrary order in the perturbation ¢xpansion,

SH(x)y = (- 1)’+124-’-"(1+z')'z’[(21+1)(2£'+1)]-*/2
x{x— D)z~ 1)% (2 =) = (204 1), ) 5.7
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These expressions form the basis for a numerical determination of the van der Waals
dispersion coeflicients in section 7.

For the helium perturbation problem, the solutions are more complicated, being
multiply infinite series with coeflicients of the form (5.5). Their significance lies in
the fact that they obey the exact boundary conditions for the wavefunction, in con-
trast with techniques based on formal power serics expansions, which generally yield
solutions containing a number of undetermined coefficients (Abbott 1986). Although
the physical solution can in principle be extracted by requiring that the wavefunction
be normalizable, no generai procedure for eliminating these extra degrees of free-
dom exists. The discrete basis treatment circumvents this problem by transferring the
boundary conditions to a simple constraint on the coefficients. Normalisability of the
solutions is implicit in the procedure.

6. Boundary conditions

We now show that the quantity S_(xz) has a direct interpretation involving the eigen-
function basis. Initially we restrict attention to a single momentum variable. Com-
bining the discrete basis expansion ¢ = ) a,;,, ¢}, With

anim = [ S ios(2)p() de 6.1)

and using the change of basis formula (3.7), yields the relation

=}

#(p) =22'“1/_ Yo IEPIE X ()] St ()0 (2) dae (6.2)

 Im

where k* = (z — 1)}/(z + 1). Hence the values of S(x) at the spectral points
(corresponding to allowed energies) are the coefficients in the expansion of @ in
terms of the eigenfunctions of the unperturbed Hamiitonian. In the two-particle
wavefunctions, we have applied the transformation (6.1) to only one of the momentum
variables. Thus we interpret S_ () as the coefficients in a mixed expansion involving
both the discrete and the eigenfunction bases.

We turn now to the origin of the boundary conditions used in the previous sec-
tion to obtain a unique solution of the recurrence relation. The gencral solution of
(5.1) consists of the particular solution already obtained plus an arbitrary multiple
of the homogeneous solution, p!_, (2 — x). When substituted into (6.2), this ho-
mogeneous solution gives rise to additional tcrms in the wavefunction of the type
Xim (T P Xy (2 = 2,0, ), Where x,,, (2,,P) = X (). These are excited states
of the unperturbed system with the same encrgy as the state ¢,. Thus, degenerate
perturbation theory must be applied. The spurious terms arise becausc in the discrete
basis the Hamiltonian is not diagonal in the degencrate subspace. Thus the prescrip-
tion of exponentially decaying coeflicients eliminates contributions from the cxcited
states, which are incompatible with the physical situation.
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7. Van der Waals dispersion energy

The first-order energy in the perturbation expansion vanishes due to the orthogonality
of the spherical harmonics. Thus the leading-order dispersion energy is the second-
order correction, given by a matrix element, E, = (W |V|¥,), of the interaction
potential. In the framework of the multipole expansion, we may caiculate an energy
contribution from each v, separately, since the cross terms vanish by orthogonality.
Hence the quantity of interest is

Ep=-4 f(l + )71 4 p2) 1B (1,2)4(1,2) dp, dp,.  (7.1)

Then the coefficients in the expansion E, = CyR ¢+ Ca R %4+ C R0 + ... are
given by

n—2
Gy, = Z Er,n-r-1- (7.2)
=1

This series yields the asymptotic dispersion cnergy up to terms of order R~1!°, since
the third-order perturbation energy is O( R™'1).

Due to the simple form of B;, in the Fock representation, the integrals (7.1)
collapse to a linear combination of just four 3 coefficients, These are known from
section 5 as integrals over S¥ and the Pollaczek weight function. Collecting functions
of x, we arrive at the result

Ey =271 (21421 [t(z'+1)-‘z'-2(41'3+11z’2+sz'+2)_z'-1(z'+2)(21'+1)
+ 200220+ D)2 + 1)!]-1/ (z—-1)Yqf' (2 - o)op(z)dz|.
(7.3)

A further quantity of interest is the cocfficicnt W, of the leading-order relativistic
energy correction proportional to o R~%. Following Koga (1985b), we have

We= (/0088 =1+ (1/12) [ (2= 1Vai(2 - 2)p(e) da, (74

The Pollaczek function ¢’ may be computed numerically from the continucd
fraction expansion,

g (z) = —2(20)t ag/{bo ~ a11b; — as/ (b~ .. )]} (1.5)

where a, = (n+21+41)/(n+1) and b, = 2[(n+{)x+1]/(n-+1). Thus (7.3) and
(7.4) provide a particularly simple method of calculating the intcraction constants.
Results of such a calculation are presented in table 1. The values arc accurate to
within one unit in the last (15th) decimal place. Our results agree perfectly with
those of Koga (1989), and with those of Thakkar (1988) obtained using a pscudostate
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Table 1. Second order van der Waals dispersion coefficients. A (m) means A x 10™.

n -Ch

6  6.499026 705405 84

8  124399083583622(2)
10 3.28582841496742(3)
12 1214860 208968 61 (5)
14 6.060:772 689 192 12 (6)
16 3.937506393999 18 (8)
18 3.234 218715849 38 (10)
0 3278573440416 62 (12)
22 4021082847685 36 (14)
24 5868996334559 96 (16)
26 1.005294 993336 29 (19)
28 1.996944 940887 58 (21)
30 4.553288 866,634 74 (23)

Wy 0.462 806 538 843 273

technique. However, our calculations do not generalize readily to the non-additive
three-body interaction coefficients.

The details of the calculation are unremarkable. Integrals of the type
[ f(z)p,(z) d= were evaluated using a standard integration routine and by direct
surnmation of the infinite series. The convergence of the series was accelerated
dramatically by asymptotic estimation of the truncation error: if f(-1) # 0, the
leading-order correction is

i 2n(n?—1)" 2 f(z ) = 21 e f (-1} N+ )N 3+ O(NY). (7.6)
n=N

The expansion coefficients 3%, may also be computed accurately and efliciently
by this method. Given that stable algorithms for calculating the Pollaczek polynomials
and functions exist (Broad 1985), the computational effort involved does not grow
rapidly with n and n'. This may be compared with matrix truncation mcthods, which
require solution of a set of linear equations whose size grows as O(nn'). These
considerations may be significant in further calculations involving slowly convergent
series of 3 coeflicients (see, for example, Koga and Uji-ic 1987b).

8. Conclusions

This work has been motivated primarily by the search for exact solutions: the disper-
sion coefficients have been calculated accurately by other methods, but relatively little
is known about the exact wavefunction. In this work, the series expansions for the
wavefunction are exact, but converge rather slowly. In this sense they are of direct
interest only to the extent that they can be compacted into closed form. The fact that
the integral formula for the coefficicnts does not appear to reduce is not promising
in this regard.

More encouraging are the results concerning the role of boundary conditions in
this treatment. A discrete basis approach entirely avoids the problem of undetermined
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coefficients, which is a major complication in more direct methods. The physical
conditions of the problem transiate naturally into a condition on the expansion cocffi-
cients. It is hoped that further investigations will lead to a better understanding of the
consequences of boundary conditions on few-particle wavefunctions. Progress is likely
to be made by relating the discrete basis solutions to formal power-series solutions
already known. The optimum procedure will involve a combination of techniques.
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